Big Idea: Cells Come from Other Cells (Reproduction)

The Importance of Cell Division

Activity - Cell Replacement

You will draw two identical symbols on your left hand (right hand if you're left handed), one on the palm and the other on the back.

Observe what happens to the symbol throughout the evening.

The Importance of Cell Division

The Importance of Cell Division

Activity - Cell Replacement

Hypothesize which stain will last longer.
ex. The stain on the pal of my hand will last longer because I always wipe the sweat from my head with the back of my hand.

The Importance of Cell Division

1.Cells continually die. If we didn't replace them, there would be no cells left.
2.Cells make more cells through the process of cell division.
3.Our bodies will continue to replace cells until the day we die.

The Importance of Cell Division

Functions of Cell Division:

1. Growth - Organisms grow by making more cells through the process called cell division.
2. Repair - Multicellular organisms repair damage by cell division.
3. Reproduction - Unicellular organisms reproduce through cell division.

The Importance of Cell Division

Activity p. 37 - From One Cell to Trillions

1. Using chalk, copy the table onto the desk, up to 10 cell divisions.
2. Without a calculator, calculate the number of cells that are produced after each cell division.
Q. How many cells will there be after 20 cell divisions?
Q. Why are there not really that many cells in your body?

Textbook Questions

Read pages 36 and 37 . Complete the following questions on page 38.

Q 1, 2, 4, 7, 8, 11, 14

2.2 Cell Structures

All living things are made up of cells. They can be unicellular (just 1 cell) or multicellular (more than 2 cells)
Plants and animals are made up of different types of cells with different organelles

2.2 Cell Structures

Lets read page 39-40 together

Micrograph of an Animal Cell

Micrograph of a Plant Cell

Cell Structures

Activity

- Using your textbook pages 39 and 40, label the diagrams of the animal and plant cell on the given handout.
- Colour the 3 organelles found in a plant cell that are not found in an animal cell green
- Colour the 1 organelle found in an animal cell that are not found in a plant cell red

Animal Cells and Plant Cells

Typical animal cell
note the:

- nucleus
- nucleolus
- chromatin
- ribosomes
- endoplasmic reticulum
- cytoplasm

The Nucleus

- the control centre of the cell (like a brain)
- surrounded by a nuclear membrane
- Tiny holes called pores that allow movement in and out of the cell

Organelles

The Nucleus

- The control centre of the cell
- Contains chromosomes which are the instructions for all activities in the cell (growth, repair, reproduction)
- Humans have 23 pairs of chromosomes
- Chromosomes are made of DNA
- Contains the nucleolus - where ribosomes are made

Ribosomes and Endoplasmic Reticulum

Ribosomes are tiny organelles that make proteins
They are either in the cytoplasm or attached to the endoplasmic reticulum (ER)
Rough ER moves proteins around the cell
Smooth ER (has no ribosomes on it) makes fats

Cytoplasm

Cytoplasm is the fluid inside a cell

It contains all the organelles, including centrioles (only found in animal cells)
Activities such as nutrient absorption, transport, and processing happens here

Centriole

Textbook Questions

Read page 39-40
P41 answer questions 1, 3-6, 8-12, 15 and 16 Extension questions 7, 13, 17

Textbook

Read pages 42 - 46 - From DNA to Proteins

DNA Structure

- Chromosomes contain DNA (deoxyribonucleic acid) formed as a double helix
- It is made up of two strands of nucleotides that fit together like a zipper

DNA Structure

Four types of nucleotide making up DNA

These nucleotides are made up of:
a phosphate
a sugar
a nitrogenous base

DNA Structure

The nitrogenous bases are: adenine
thymine
cytosine
guanine

Adenine always pairs with thymine ($\mathrm{A}-\mathrm{T}$)
cytosine always pairs with guanine $(\mathbf{C}-\mathbf{G})$

DNA Structure

Activity - Formation of DNA
Do not eat anything until you are done!
You will receive a mark for your completed model.
After I give you a mark, you may eat it.

DNA Structure

The sides of the ladder are made up of sugar and phosphate molecules joined together

The rungs of the ladder are made from the pairs of nitrogenous bases

DNA Structure

DNA is an amazing molecule because it is able to replicate itself
Before cell division can happen, each DNA molecule must copy itself
The DNA molecule splits like a zipper, and new nucleotides reform onto the ${ }_{\text {new }}$ 2 parts of the broken ladder

The Genetic Code

DNA is a 4 - letter alphabet (A, T, C, G)
These 4 letters code for 20 different words (amino acids)
These 20 words can be used to make millions of different sentences (proteins)
It's these proteins made from the genetic code that make up all the different living things on our planet!

DNA Sentences

- As a group of two or three, use the following words to make as many sentences as you can.
The DidAndIts

Not
You
Can
Her
One
Are
Him
You

Say
Now
She
Too
Use
See
New
Cat

DNA Sentences

- The letters represent nitrogenous bases
- The word represent amino acids
- The sentences represent proteins

From DNA to Genes

Chromosomes are organized into smaller sections called genes
Each gene codes for a specific protein
All the genes in an organism is called the genome

A Taste of Genetics: Build Your Own DNA!

- See the handout
- Collect the materials you need
- Two giant nibs
- 20-26 marshmallows
- 10-13 toothpicks
- A clean sheet of paper to work on

From Genes to Proteins

Proteins are made from DNA
But first, the DNA is translated into another language called RNA (ribonucleic acid)
RNA is a single strand made from a DNA molecule

RNA then takes its information and leaves the nucleus to find a ribosome where proteins are made

Function of Proteins

Lots of different functions:
enzymes to make reactions happen faster hormones are messengers between cells acts to strengthen tissues

See page 45 table 1 for a list of common proteins and their functions

Variation

Variation means differences between things
All humans have the same number of genes and they are almost all identical
The differences are caused by different versions of the same gene, called traits

Some traits are controlled by several genes
Examples of traits: red hair, brown eyes, hitch-hikers thumb

Human Traits Survey

Activity - Textbook page 46
In this activity, we will survey the class to find out which of the following traits we have.
Copy the table on page 46 into your notes. Include room for the 6 traits given.
Record whether a trait is present in each of your classmates.

Calculate the ratio for each trait
(number with trait: number without trait)

Human Traits Survey

Q. Do we see any pattern in the ratios?
Q. What trait was most common?
Q. What trait was least common?
Q. Do you think that the ratios would be the same in other classes in the school? In BC?

Textbook Questions

Re-read pages 42-46
Answer Questions on page 47

$$
1-3,5-8,12-16
$$

Textbook Questions

Read pages 49-51

The Cell Cycle

- The cell cycle is the series of events from one cell division to another
- Most of a cell's life cycle is called interphase
- The remainder of the time is called mitosis, or cell division

The Cell Cycle

- Growth phase 1
- Synthesis phase (DNA duplicated)
- Growth phase 2
- Mitosis
(cell division)

The Cell Cycle

- 90% of the cell cycle is interphase, where the cell grows by making more cytoplasm and more organelles, and the chromosomes are copied
- copied chromosomes are called sister chromatids, each with identical instructions
- During cell division, one copy of each chromosome will go into each of the two cells

Cell Division

- Cell division is the process where one cell splits evenly into two equal-sized daughter cells
- It is made up of two parts - mitosis and cytokinesis
- Mitosis is the process where nuclear material divide evenly forming sister chromatids
- Cytokinesis is the process where the cytoplasm and organelles divide evenly
- Each equal-sized daughter cell is half the size of the parent cell

Phases of Mitosis

There are 4 phases to mitosis

Prophase

- sister chromatids formed during interphase are now visible and appear as an X
- the nucleolus disappears and the nuclear membrane disappear
- centrioles move to the opposite ends of the cell and spindle fibres grow toward the chromosomes

Prophase

Phases of Mitosis

Metaphase

- the spindle is completely formed and the sister chromatids attach to it
- The sister chromatids line up in the middle of the cell

Metaphase

Phases of Mitosis

Anaphase

- the sister chromatids are pulled apart by the spindle and move towards opposite sides of the the cell
- each half of the sister chromatids is called a chromosome again

Anaphase

anaphase -chromosomes are moving toward the poles

Phases of Mitosis

Telophase

- the new chromosomes have reached opposite ends of the cell
- the nuclear membrane reforms
- the spindle disappears
- the chromosomes lengthen and become thinner
- the nucleolus reappears
- cytokinesis now occurs

Telophase

Cytokinesis

- Cytokinesis occurs at the end of telophase
- It divides the cytoplasm and all organelles into two daughter cells
- In animal cells, the cell pinches between the two nuclei until it pinches right together, forming two different cells
- These two daughter cells now begin interphase

Animal Cell Cytokinesis

Cytokinesis

In plant cells, there is no indentation of the cell Instead, a cell plate forms between the two nuclei
The cell plate grows until it reaches the edges of the cell membrane, separating the two nuclei
A new cell wall also forms between the two daughter cells

Plant Cell Cytokinesis

Mitosis Summary

Mitosis

Mitosis Animations

Textbook Questions

Read pages 49-51
Answer questions 1 -12, 17
Additional Questions because you can't stop talking:

Textbook

Read pages 53-55 on Changes to a Cell's DNA Write all the words in bold and their definitions.

Changes to a Cell's DNA

A change in DNA is called a mutation
Mutations cause a change in the order of nucleotides, which change the order of amino acids, which change the protein
Mutations can be either:

1. beneficial
2. neutral (causing no effect)
3. harmful

Changes to a Cell's DNA

Harmful Mutations

These cause genetic diseases such as:
cystic fibrosis
Duchenne muscular dystrophy
Turner syndrome
Down syndrome
Klinefelter syndrome
haemophilia

Cancer

- Can be caused by harmful mutations
- Cancer affects the nucleus and causes uncontrolled cell division
- The DNA of cancer cells has mutated so that the cell does not know when to stop dividing

Changes to a Cell's DNA

- Cancer cells develop into a mass called a tumour
- Two types of tumours:
- benign (causes no damage to surround area)
- malignant (causes damage to surround area)
- Cancer cells that move from one area to another is called metastasis

Changes to a Cell's DNA

Normal and Cancer Cells Structure

Cancer Cells Vs Normal Cells

Changes to a Cell's DNA

Anything that causes cancer is called a carcinogen
Known carcinogens are:
tobacco
viruses (HPV, Hepatitis)
x-rays
pesticides
solar radiation
trans fatty acids
asbestos

DANGER POISON !

Acetone (solvent)

*Naphtylamine
Methanol
(used as rocket fuel)

Cyanhydric acid (was used in the gas chambers) Ammoniac (détergent)
*Urethane
*Pyrene Naphtalè̀ne (moth-repellent)

Nicotine
(used as a herbicide and insecticide)
Arsenic (lethal poison)
___ *Dibenzacridine
*Cadmium ——_*Polonium 210 (used in batteries)
Carbon monoxide (found in exhaust furnes)

Vinyl chloride (used in plastic materials)

*Known carcinogenic substances

Treating Cancer

Surgery to remove tumours
Radiation to kill cancer cells
Chemotherapy uses drugs to stop cell division
Combination of these

Textbook Questions

Read pages 53-55
Answer all questions on page 56

Textbook

Read pages on methods of asexual reproduction 57-59

Asexual Reproduction

Asexual reproduction involves only one parent
Offspring are genetically identical to the parent and are called clones

Asexual Reproduction

There are 5 types of asexual reproduction: Binary Fission
Budding
Vegetative Reproduction
Fragmentation
Spore Formation

Binary Fission

Occurs only in unicellular organisms like bacteria

Parent undergoes cell division to produce 2 clones

Binary Fission

Allows for very rapid growth of a population
eg. A single bacterium that multiplies every 20 minutes will be 32768 after 5 hours, and will be 2097152 after 7 hours!

Budding

Offspring start as a small growth on the parent called a bud
Bud grows until big enough to survive on its own, then breaks off the parent
Since it grew directly from the parent, it is a clone
eg. hydra

Budding

Vegetative Reproduction

Occurs in plants only

Plant sends out a horizontal stem, called a runner

The runner can grow its own roots and start a new plant

Vegetative Reproduction

Bulbs (daffodils) and tubers (potatoes) are also forms of vegetative reproduction

Fragmentation

Part of the animal breaks off and grows into a new organism
Requires regeneration to occur - meaning the lost or missing part must regrow!

Fragmentation

Fragmentation

Spore Formation

Spores are made by cell division
They are cells with thick cell walls

Produced in huge numbers by fungi and ferns

Characteristics of Asexual Reproduction

1. Only 1 organism needed to reproduce
2. All offspring are clones to each other and parent
3. A single organism can produce lots of offspring very quickly

1 and 3 are good things (pros)
2 can be bad (con) - a disease can kill the entire population!

Textbook Questions

Read pages $57-59$
Answer questions 1, 2, 3, 4, 6, 9, 12, 13, 14

Mitosis Review

Review Questions

Page 70 and 71
Questions 1-21
Extension Questions 22 - 26 (if you can)
Test Tuesday

