Science 10 Review

Part 1: Chemical Compounds

Metal and non-metal combination

PERIODIC TABLE OF THE ELEMENTS

1 +1 H Hydrogen 1.0		_			Atom	ic Number		+4	MET	ALS -		 	— ► N0	ON-MET	ALS	1 —1 H Hydrogen 1.0	2 0 He Hollum 4.0
3 +1 Li Ulthum 6.9	4 +2 Be Beryllum 9.0				S ymb Name Atom	ol e ic Mass	Ti Ti Tianium 47.9				5 +3 B Baron 10.8	6 +4 C Cathon 12.0	7 –3 N Ntrogen 14.0	8 -2 O Citygen 16.0	9 –1 F Fluorine 19.0	10 0 Ne Neon 20.2	
11 +1 Na ^{Sodum} 23.0	12 +2 Mg Magneelum 24.3											13 +3 Al Aluminum 27.0	14 +4 Si ^{Silicon} 28.1	15 –3 P Phosphorus 31.0	16 -2 S Sulphur 32.1	17 -1 CI Chlorine 35.5	18 0 Ar Argon 39.9
19 +1 K Potassium 39.1	20 +2 Ca ^{Caklum} 40.1	21 +3 Sc Scandium 45.0	22 +4 Ti ⁺³ Titanium 47.9	23 +5 V +4 Vanadium 50.9	24 +3 Cr +2 Chromium 52.0	25 +2 Mn +3 Manganese 54.9	26 +3 Fe ⁺² Im 55.8	27 +2 Co ⁺³ Cotet 58.9	28 +2 Ni ⁺³ Nickel 58.7	29 +2 Cu ⁺¹ 63.5	30 +2 Zn ^{Zinc} 65.4	31 +3 Ga Gallum 69.7	32 +4 Ge Germanium 72.6	33 –3 As ^{Arsenk:} 74.9	34 -2 See Solonium 79.0	35 –1 Br ^{Bromine} 79.9	36 0 Kr Krypton 83.8
37 +1 Rb Rubidium 85.5	38 +2 Sr Strontlum 87.6	39 +3 Y Yttrium 88.9	40 +4 Zr Zirconium 91.2	41 +3 Nb +5 Nicolum 92.9	42 +2 Mo ⁺³ Motybdenum 95.9	43 +7 Tc Technolium (98)	44 +3 Ru ⁺⁴ Ruthenium 101.1	45 +3 Rh +4 Rhodum 102.9	46 +2 Pd +4 Palladium 106.4	47 +1 Ag Silver 107.9	48 +2 Cd Catinium 112.4	49 +3 In Indum 114.8	50 +4 Sn ⁺² Tn 118.7	51 +3 Sb +5 Antimory 121.8	52 –2 Te Telurium 127.6	53 -1 I Iodine 126.9	54 0 Xe ^{Xenon} 131.3
55 +1 Cs ^{Coslum} 132.9	56 +2 Ba Barium 137.3	57 +3 La Lanthenum 138.9	72 +4 Hf Hatnium 178.5	73 +5 Ta Tantalum 180.9	74 +6 W Tungsten 183.8	75 +4 Re ⁺⁷ Rhenium 186.2	76 +3 Os +4 Osmium 190.2	77 +3 Ir +4 Iridium 192.2	78 +4 Pt +2 Platinum 195.1	79 +3 Au ⁺¹ Gold 197.0	80 +2 Hg ⁺¹ Mercury 200.6	81 +1 TI +3 Thailum 204.4	82 +2 Pb +4 Lead 207.2	83 +3 Bi ⁺⁵ Bismuth 209.0	84 +2 Po +4 Pokinium (209)	85 –1 At Astative (210)	86 0 Rn Radon (222)
87 +1 Fr Francium (223)	88 +2 Ra Radum (226)	89 +3 Ac Actinium (227)	104 Rf Rutherfordium (261)	105 Db Dubnium (262)	106 Sg Seaborgium (263)	107 Bh Bohrium (262)	108 Hs Hasslum (265)	109 Mt Metnerium (266)								Halogens	Noble Gases
Alkali Metals	Alkaline Earth Metals		\bigvee		70											1 70 10	
Based on mass of C-12 at 12.00.				58 +3 Ce +4 ^{Cortum} 140.1	59 +3 Pr ⁺⁴ Praseodymium 140.9	60 +3 Nd Neodymium 144.2	61 +3 Pm Promethum (145)	62 +3 Sm ⁺⁴ Samarlum 150.4	63 +3 Eu ⁺² Europium 152.0	64 +3 Gd Gadolinium 157.3	65 +3 Tb ⁺⁴ Terblum 158.9	66 +3 Dy Dysprosium 162.5	67 +3 Ho Holmlum 164.9	68 +3 Er Erblum 167.3	69 +3 Tm ⁺² Thulum 168.9	70 +3 Yb ⁺² Ytterblum 173.0	71 +3 Lu Lukellum 175.0
Any value in parentheses is the mass of the most stable or best known isotope for elements which do not occur naturally.				90 +4 Th Thortum 232.0	91 +5 Pa ⁺⁴ Protactinium 231.0	92 +6 U +4 Uranium 238.0	93 +5 Np +3 Neptinium +6 (237)	94 +4 Pu +6 +3 Putonium +5 (244)	95 +3 Am +5 Amoricum +6 (243)	96 +3 Cm ^{Curlum} (247)	97 +3 Bk +4 Borkolum (247)	98 +3 Cf Californium (251)	99 +3 Es Einsteinium (252)	100 +3 Fm Fermium (257)	101 +2 Md ⁺³ Mendelevium (258)	102 +2 No ⁺³ Notellum (259)	103 +3 Lr Lawrencium (262)

Metal and non-metal combination

- Metal and non-metal combination
- Contains charged <u>ions</u> (atoms or group of atoms that have lost or gained electrons)

- Metal and non-metal combination
- Contains charged <u>ions</u> (atoms or group of atoms that have lost or gained electrons)

 Ionic bond forms as a result of electron transfer.

- Ionic bond is a force of attraction between positive and negative ions Cu^{2+} O^{2-}
- E.g. CuO, $NaHC_2O_4$

 Ionic compounds form 3D crystals that contain many ions

 Cu^{2+}

O²⁻

- E.g. CuO, $NaHC_2O_4$
- Ionic compounds forms 3D crystals that contain many ions
- CuO, a formula unit, represents the lowest ratio of positive to negative ions

Non-metal and non-metal combination

PERIODIC TABLE OF THE ELEMENTS

1 +1 H Hydrogen 1.0		_			Atom	ic Number		+4	MET	ALS -		 	— ► N0	ON-MET	ALS	1 —1 H Hydrogen 1.0	2 0 He Hollum 4.0
3 +1 Li Ulthum 6.9	4 +2 Be Beryllum 9.0				S ymb Name Atom	ol e ic Mass	Ti Ti Tianium 47.9				5 +3 B Baron 10.8	6 +4 C Cathon 12.0	7 –3 N Ntrogen 14.0	8 -2 O Citygen 16.0	9 –1 F Fluorine 19.0	10 0 Ne Neon 20.2	
11 +1 Na ^{Sodum} 23.0	12 +2 Mg Magneelum 24.3											13 +3 Al Aluminum 27.0	14 +4 Si ^{Silicon} 28.1	15 –3 P Phosphorus 31.0	16 -2 S Sulphur 32.1	17 -1 CI Chlorine 35.5	18 0 Ar Argon 39.9
19 +1 K Potassium 39.1	20 +2 Ca ^{Caklum} 40.1	21 +3 Sc Scandium 45.0	22 +4 Ti ⁺³ Titanium 47.9	23 +5 V +4 Vanadium 50.9	24 +3 Cr +2 Chromium 52.0	25 +2 Mn +3 Manganese 54.9	26 +3 Fe ⁺² Im 55.8	27 +2 Co ⁺³ Cotet 58.9	28 +2 Ni ⁺³ Nickel 58.7	29 +2 Cu ⁺¹ 63.5	30 +2 Zn ^{Zinc} 65.4	31 +3 Ga Gallum 69.7	32 +4 Ge Germanium 72.6	33 –3 As ^{Arsenk:} 74.9	34 -2 See Solonium 79.0	35 –1 Br ^{Bromine} 79.9	36 0 Kr Krypton 83.8
37 +1 Rb Rubidium 85.5	38 +2 Sr Strontlum 87.6	39 +3 Y Yttrium 88.9	40 +4 Zr Zirconium 91.2	41 +3 Nb +5 Nicolum 92.9	42 +2 Mo ⁺³ Motybdenum 95.9	43 +7 Tc Technolium (98)	44 +3 Ru ⁺⁴ Ruthenium 101.1	45 +3 Rh +4 Rhodum 102.9	46 +2 Pd +4 Palladium 106.4	47 +1 Ag Silver 107.9	48 +2 Cd Catinium 112.4	49 +3 In Indum 114.8	50 +4 Sn ⁺² ^{Tn} 118.7	51 +3 Sb +5 Antimory 121.8	52 –2 Te Telurium 127.6	53 -1 I Iodine 126.9	54 0 Xe ^{Xenon} 131.3
55 +1 Cs ^{Coslum} 132.9	56 +2 Ba Barium 137.3	57 +3 La Lanthenum 138.9	72 +4 Hf Hatnium 178.5	73 +5 Ta Tantalum 180.9	74 +6 W Tungsten 183.8	75 +4 Re ⁺⁷ Rhenium 186.2	76 +3 Os +4 Osmium 190.2	77 +3 Ir +4 Iridium 192.2	78 +4 Pt +2 Platinum 195.1	79 +3 Au ⁺¹ Gold 197.0	80 +2 Hg ⁺¹ Mercury 200.6	81 +1 TI +3 Thailum 204.4	82 +2 Pb +4 Lead 207.2	83 +3 Bi ⁺⁵ Bismuth 209.0	84 +2 Po +4 Pokinium (209)	85 –1 At Astative (210)	86 0 Rn Radon (222)
87 +1 Fr Francium (223)	88 +2 Ra Radum (226)	89 +3 Ac Actinium (227)	104 Rf Rutherfordium (261)	105 Db Dubnium (262)	106 Sg Seaborgium (263)	107 Bh Bohrium (262)	108 Hs Hasslum (265)	109 Mt Metnerium (266)								Halogens	Noble Gases
Alkali Metals	Alkaline Earth Metals		\bigvee		70											1 70 10	
Based on mass of C-12 at 12.00.				58 +3 Ce +4 ^{Cortum} 140.1	59 +3 Pr ⁺⁴ Praseodymium 140.9	60 +3 Nd Neodymium 144.2	61 +3 Pm Promethum (145)	62 +3 Sm ⁺⁴ Samarlum 150.4	63 +3 Eu ⁺² Europium 152.0	64 +3 Gd Gadolinium 157.3	65 +3 Tb ⁺⁴ Terblum 158.9	66 +3 Dy Dysprosium 162.5	67 +3 Ho Holmlum 164.9	68 +3 Er Erblum 167.3	69 +3 Tm ⁺² Thulum 168.9	70 +3 Yb ⁺² Ytterblum 173.0	71 +3 Lu Lukellum 175.0
Any value in parentheses is the mass of the most stable or best known isotope for elements which do not occur naturally.				90 +4 Th Thortum 232.0	91 +5 Pa ⁺⁴ Protactinium 231.0	92 +6 U +4 Uranium 238.0	93 +5 Np +3 Neptunium +6 (237)	94 +4 Pu +6 +3 Putonium +5 (244)	95 +3 Am +5 Amoricum +6 (243)	96 +3 Cm ^{Curlum} (247)	97 +3 Bk +4 Borkolum (247)	98 +3 Cf Californium (251)	99 +3 Es Einsteinium (252)	100 +3 Fm Fermium (257)	101 +2 Md ⁺³ Mendelevium (258)	102 +2 No ⁺³ Notellum (259)	103 +3 Lr Lawrencium (262)

Non-metal and non-metal combination

- Non-metal and non-metal combination
- Form molecules

- Non-metal and non-metal combination
- Form molecules

 Contain covalent bonds that result from electron sharing

- Non-metal and non-metal combination
- Form molecules

- Contain covalent bonds that result from electron sharing
- E.g. CH₄, SO₂

 Acids are molecular compounds that contain hydrogen atoms. They produce the H⁺ ion.

- Acids are molecular compounds that contain hydrogen atoms. They produce the H⁺ ion.
- E.g. HCl = hydrochloric acid H₂SO₄ = sulphuric acid

- Acids are molecular compounds that contain hydrogen atoms. They produce the H⁺ ion.
- E.g. HCl = hydrochloric acid H₂SO₄ = sulphuric acid
- Bases contain the hydroxide ion, OH E.g NaOH

- Acids are molecular compounds that contain hydrogen atoms. They produce the H+ ion.
- E.g. HCl = hydrochloric acid H₂SO₄ = sulphuric acid
- Bases contain the hydroxide ion, OH E.g NaOH
- Salts are ionic compounds that form from reacting acids and bases. E.g. NaCl

Are subscripts that indicate the phase of the chemical

- Are subscripts that indicate the phase of the chemical
 - E.g (s) solid state; $Fe_{(s)}$

Are subscripts that indicate the phase of the chemical
E.g (s) solid state; Fe_(s)
(l) liquid state; H₂O_(l)

- Are subscripts that indicate the phase of the chemical
 - E.g (s) solid state; $Fe_{(s)}$
 - (1) liquid state; $H_2O_{(1)}$
 - (g) gaseous state; $O_{2(g)}$

- Are subscripts that indicate the phase of the chemical
 - E.g (s) solid state; $Fe_{(s)}$ (l) liquid state; $H_2O_{(l)}$
 - (g) gaseous state; $O_{2(g)}$

(aq) means aqueous or substance is dissolved in water; NaCl_(aq)

• All ionic compounds and acids dissociate or break up into ions when dissolved in water

- All ionic compounds and acids dissociate (break up into ions) when dissolved in water
- E.g. Ca and NO_2

Polyatomic ion

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and NO_2 Ca²⁺

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and NO_2 Ca²⁺ NO_2^-
- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and NO₂ Ca²⁺ NO₂-
 - NO_{2}

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and NO₂ Ca²⁺ NO₂- NO₂-

$$Ca(NO_2)_{2(s)} \longrightarrow$$

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and NO₂ Ca²⁺ NO₂- NO₂-

 $Ca(NO_2)_{2(s)} \longrightarrow$ calcium nitrite

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and NO₂ Ca²⁺ NO₂- NO₂-

 $Ca(NO_2)_{2(s)} \longrightarrow Ca^{2+}$ calcium nitrite

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and NO₂ Ca²⁺ NO₂- NO₂- NO₂-

 $Ca(NO_2)_{2(s)} \longrightarrow Ca^{2+}$, calcium nitrite

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and NO₂ Ca²⁺ NO₂- NO₂-

 $Ca(NO_2)_{2(s)} \longrightarrow Ca^{2+} + 2NO_2^{-}$ calcium nitrite

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and NO₂ Ca²⁺ NO₂- NO₂-

 $Ca(NO_2)_{2(s)} \longrightarrow Ca^{2+}_{(aq)} + 2NO_2^{-}$ calcium nitrite

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and NO₂ Ca²⁺ NO₂- NO₂- NO₂-

 $Ca(NO_2)_{2(s)} \longrightarrow Ca^{2+}_{(aq)} + 2NO_{2^-}_{(aq)}$ calcium nitrite

• E.g. Ga and S Ga^{3+} S²⁻

• E.g. Ga and S Ga³⁺ S²⁻ S²⁻

•	E.g.	Ga and S	Ga ³⁺	S ²⁻
			Ga ³⁺	S ²⁻

• E.g.	Ga and S	Ga ³⁺	S ²⁻
		Ga ³⁺	S ²⁻
			S ²⁻

$$Ga_2S_{3(s)}$$
 \longrightarrow

$$Ga_2S_{3(s)} \longrightarrow 2Ga_{3+(aq)}$$

ending change to ide

Science 10 Review Part 2: Balancing Equations

Writing and Balancing Chemical Equations

Step 1

Write chemical equation with phase symbols if not already done.

Writing and Balancing Chemical Equations

Step 1

Write chemical equation with phase symbols if not already done.

e.g.
$$Al_{(s)} + I_{2(g)} \rightarrow AlI_{3(s)}$$

Assign every chemical species a coefficient of ONE.

Assign every chemical species a coefficient of ONE.

Assign every chemical species a coefficient of ONE.

e.g. $Al_{(s)} + I_{2(g)} \rightarrow AlI_{3(s)}$

Assign every chemical species a coefficient of ONE.

e.g. $\underline{1}_{(s)} + \underline{1}_{2(g)} \rightarrow \underline{1}_{3(s)}$

Count the number of each atom on reactant and product side of equation (multiply coefficient and subscript).

Count the number of each atom on reactant and product side of equation (multiply coefficient and subscript).

 $Al_2(SO_3)_3$

Count the number of each atom on reactant and product side of equation (multiply coefficient and subscript).

 $Al_2(SO_3)_3$

2 Aluminum

- 3 Sulphur
- 9 Oxygen

Count the number of each atom on reactant and product side of equation (multiply coefficient and subscript).

 $Al_2(SO_3)_3$

 $3 Al_2(SO_3)_3$

2 Aluminum

3 Sulphur

9 Oxygen

Count the number of each atom on reactant and product side of equation (multiply coefficient and subscript).

 $Al_2(SO_3)_3$

- 2 Aluminum
- 3 Sulphur
- 9 Oxygen

- $3 Al_2(SO_3)_3$
 - 6 Aluminum
 - 9 Sulphur
 - 27 Oxygen

Increase or change the coefficients to make numbers of atoms balance on both sides of equation.

e.g. $\underline{2}_{(s)} + \underline{3}_{2(g)} \rightarrow \underline{2}_{A|_{3(s)}}$

<u>Step 5</u> Always double check your answer. e.g. $2 Al_{(s)} + 3 I_{2(q)} \rightarrow 2 AlI_{3(s)}$ **Products** Reactants AI = 2AI = 2I = 6I = 6

Helpful Hints:

•Balance elements in elemental form (Fe, O_2 , S_8 , P_4) last.

Helpful Hints:

•Balance elements in elemental form (Fe, O_2 , S_{8} , P_4) last.

• Balance polyatomic ions (e.g. SO_4^{2-}) as a group if they don't break apart.

Helpful Hints:

- •Balance elements in elemental form (Fe, O_2 , S_8 , P_4) last.
- Balance polyatomic ions (e.g. SO_4^{2-}) as a group if they don't break apart.
- Balance oxygen and hydrogen last.

Example:

 $\underline{C_8H_{18(s)}} + \underline{12.5O_{2(g)}} \rightarrow \underline{8}CO_{2(g)} + \underline{9H_2O_{(g)}}$ 25 Oxygen 16 Oxygen + 9 Oxygen 25 Oxygen Must double all coefficients to remove fraction

Example:

 $\underline{2} C_8 H_{18(s)} + \underline{25} O_{2(g)} \rightarrow \underline{16} CO_{2(g)} + \underline{18} H_2 O_{(g)}$ 50 Oxygen
50 Oxygen
16 Carbon
16 Carbon

16 Carbon

36 Hydrogen

36 Hydrogen

Science 10 Review

Part 3: Names & Formulas of Compounds
Roman Numeral in name indicates ion charge

- Roman Numeral in name indicates ion charge
- e.g mercury (II) phosphate

- Roman Numeral in name indicates ion charge
- e.g mercury (II) phosphate Hg²⁺ PO₄³⁻

- Roman Numeral in name indicates ion charge
- e.g mercury (II) phosphate Hg²⁺ PO₄³⁻ Hg²⁺

- Roman Numeral in name indicates ion charge
- e.g mercury (II) phosphate Hg²⁺ PO₄³⁻ Hg²⁺ PO₄³⁻

- Roman Numeral in name indicates ion charge
- e.g mercury (II) phosphate Hg²⁺ PO₄³⁻ Hg²⁺ PO₄³⁻ Hg²⁺

- Roman Numeral in name indicates ion charge
- e.g mercury (II) phosphate Hg²⁺ PO₄³⁻ Hg₃(PO₄)₂ Hg²⁺ PO₄³⁻ Hg²⁺

 Must use a roman numeral to indicate the charge of metal ions with more than one possible ion charge

 Must use a roman numeral to indicate the charge of metal ions with more than one possible ion charge

 Must use a roman numeral to indicate the charge of metal ions with more than one possible ion charge

e.g
$$Cr_2O_3$$
 Cr
 \uparrow Cr
+3 or +2

- Must use a roman numeral to indicate the charge of metal ions with more than one possible ion charge
- e.g Cr_2O_3 Cr O^{2-} \uparrow Cr O^{2-} +3 or +2 O^{2-}

- Must use a roman numeral to indicate the charge of metal ions with more than one possible ion charge
- e.g Cr_2O_3 $Cr^{3+} O^{2-}$ \uparrow $Cr^{3+} O^{2-}$ +3 or +2 O^{2-}

- Must use a roman numeral to indicate the charge of metal ions with more than one possible ion charge
- e.g Cr_2O_3 $Cr^{3+} O^{2-}$ \uparrow $Cr^{3+} O^{2-}$ +3 or +2 O^{2-}

chromium (III) oxide

 A roman numeral is not required when a metal has only one ion charge • A roman numeral is not required when a metal has only one ion charge

e.g K_2SO_4

• A roman numeral is not required when a metal has only one ion charge

e.g K₂SO₄ † +1 only

 A roman numeral is not required when a metal has only one ion charge

 Binary compounds use prefix system to indicate the number atoms of each element

- Binary compounds use prefix system to indicate the number atoms of each element
- The element furthest to the left or farthest down the periodic table is written first

Greek prefixes

- 1 mono
- 2 di
- <mark>3 -</mark> tri
- 4 tetra
- 5 penta

- 6 hexa
- 7 hepta
- <mark>8</mark> octa
- 9 nona
- 10 deca

sulphur dioxide

sulphur dioxide

SO₂

SO₂

sulphur dioxide tetranitrogen nonaoxide

sulphur dioxide SO_2 tetranitrogen nonaoxide N_4O_9

sulphur dioxide tetranitrogen nonaoxide diphosphorus pentoxide

SO₂ N₄O₉

sulphur dioxide SO_2 tetranitrogen nonaoxide N_4O_9 diphosphorus pentoxide P_2O_5

Mono is never used for the first element

- Mono is never used for the first element
- Second element changes to -ide ending

- Mono is never used for the first element
- Second element changes to -ide ending
- Vowels (a, o) on prefix are sometimes omitted if followed by vowels (a, o)

- Mono is never used for the first element
- Second element changes to -ide ending
- Vowels (a, o) on prefix are sometimes omitted if followed by vowels (a, o)
 - e.g. carbon monooxide \rightarrow carbon monoxide
SiO₂

SiO₂

silicon dioxide

SiO₂ N₂S silicon dioxide

 SiO_2 N_2S

silicon dioxide dinitrogen monosulphide

 SiO_2 N_2S P_4CI_6 silicon dioxide dinitrogen monosulphide

SiO₂ silicon dioxide N₂S dinitrogen monosulphide P₄Cl₆ tetraphosphorus hexachloride

Science 10 Review Part 4: Chem/Phys Change Chemical Equations

 Physical change: no new substance is formed

- Physical change: no new substance is formed
- Chemical change: new substance is formed

- Physical change: no new substance is formed
- Chemical change: new substance is formed
- Evidence for chemical change:

- Physical change: no new substance is formed
- Chemical change: new substance is formed
- Evidence for chemical change: energy change colour change formation of a precipitate (solid) formation of a gas

Energy Changes

- Endothermic Rxns : energy absorbed
 e.g ice pack
- Exothermic Rxns: energy released e.g. combustion

 In Chemistry 11, a solution means something is dissolved in water. Therefore, the phase is aqueous.

- In Chemistry 11, a solution means something is dissolved in water. Therefore, the phase is aqueous.
- Must include phase symbols and balance the equation

- In Chemistry 11, a solution means something is dissolved in water. Therefore the phase is aqueous.
- Must include phase symbols and balance the equation
- Diatomic molecules: H_2 , N_2 , O_2 , F_2 , Cl_2 , Br_2 , I_2

PERIODIC TABLE OF THE ELEMENTS

1 +1 H Hydrogen 1.0					Atom	ic Number		-44	META	ALS -		 	—► N0	ON-MET	ALS	1 -1 H Hydrogen 1.0	2 0 He Hollum 4.0
3 +1 Li Ulthum 6.9	4 +2 Be Beryllum 9.0				S ymb Name Atom	ol e ic Mass	Ti 11a 47.		combining capacities			5 +3 B Baron 10.8	6 +4 C Cathon 12.0	7 –3 N Ntrogen 14.0	8 -2 O Citygen 16.0	9 –1 F Fluorine 19.0	10 0 Ne Neon 20.2
11 +1 Na Sodum 23.0	12 +2 Mg Magnesium 24.3												14 +4 Si ^{Silcon} 28.1	15 –3 P Phosphorus 31.0	16 -2 S Sulphur 32.1	17 –1 Cl Chlorine 35.5	18 0 Ar Argon 39.9
19 +1 K Potassium 39.1	20 +2 Ca ^{Cakium} 40.1	21 +3 Sc Scandium 45.0	22 +4 Ti ⁺³ Titanium 47.9	23 +5 V +4 Vanadium 50.9	24 +3 Cr +2 Chromium 52.0	25 +2 Mn +3 Manganese 54.9	26 +3 Fe ⁺² Im 55.8	27 +2 Co +3 Cotet 58.9	28 +2 Ni ⁺³ Nickel 58.7	29 +2 Cu ⁺¹ 63.5	30 +2 Zn ^{Zinc} 65.4	31 +3 Ga Gallum 69.7	32 +4 Ge _{Germanium} 72.6	33 –3 As Arsenk 74.9	34 -2 See Selenium 79.0	35 –1 Br Bromine 79.9	36 0 Kr Krypton 83.8
37 +1 Rb Rubidium 85.5	38 +2 Sr Strontlum 87.6	39 +3 Y Yttrium 88.9	40 +4 Zr Zirconium 91.2	41 +3 Nb +5 Nicklum 92.9	42 +2 Mo ⁺³ Motybdenum 95.9	43 +7 Tc Technelum (98)	44 +3 Ru ⁺⁴ Ruthonium 101.1	45 +3 Rh Rhodum 102.9	46 +2 Pd +4 Paladum 106.4	47 +1 Ag Silver 107.9	48 +2 Cd Catimum 112.4	49 +3 In Indum 114.8	50 +4 Sn ⁺² ^{Tn} 118.7	51 +3 Sb +5 Antimony 121.8	52 -2 Te Telurium 127.6	53 -1 I Iodine 126.9	54 0 Xe ^{Xenon} 131.3
55 +1 Cs Coslum 132.9	56 +2 Ba Barlum 137.3	57 +3 La Lanthenum 138.9	72 +4 Hf Hafnium 178.5	73 +5 Ta Tantalum 180.9	74 +6 W Tungsten 183.8	75 +4 Re ⁺⁷ Rhenium 186.2	76 +3 Os +4 Osmlum 190.2	77 +3 Ir +4 Iridium 192.2	78 +4 Pt ⁺² Platinum 195.1	79 +3 Au ⁺¹ Gold 197.0	80 +2 Hg ⁺¹ Mercury 200.6	81 +1 TI ⁺³ Thailum 204.4	82 +2 Pb +4 Lood 207.2	83 +3 Bi ⁺⁵ Bismuth 209.0	84 +2 Po +4 Potenium (209)	85 –1 At Astatine (210)	86 0 Rn Radon (222)
87 +1 Fr Francium (223)	88 +2 Ra Radum (226)	89 +3 Ac Actinium (227)	104 Rf Rutherfordium (261)	105 Db Dubnium (262)	106 Sg Seaborgium (263)	107 Bh Bohrium (262)	108 Hs Hasslum (265)	109 Mt Metnerium (266)								Halogens	Noble Gases
Alkali Metals	Alkaline Earth Metals		\bigvee	58 +3	59 +3	60 +3	61 +3	62 +3	63 +3	64 +3	65 +3	66 +3	67 +3	68 +3	69 +3	70 +3	71 +3
Based on mass of C-12 at 12.00.				Ce +4 Cetum 140.1	Pr ⁺⁴ Praseodymium 140.9	Noodymium 144.2	Promethum (145)	Samurtum 150.4	Eu +2 Europium 152.0	Gd Gadolinium 157.3	Tb +4 Terblum 158.9	Dy Dysproslum 162.5	Ho Holmlum 164.9	Erbium 167.3	Tm ⁺² Thulum 168.9	Yb ⁺² Ytterblum 173.0	Lu Luleitum 175.0
Any value in parentheses is the mass of the most stable or best known isotope for elements which do not occur naturally.				90 +4 Th Thotum 232.0	91 +5 Pa ⁺⁴ Protactinium 231.0	92 +6 U +4 Uranium 238.0	93 +5 Np +3 Neptarium +6 (237)	94 +4 Pu +6 +3 Putonium +5 (244)	95 +3 Am +4 45 Amoricum +6 (243)	96 +3 Cm ^{Curlum} (247)	97 +3 Bk +4 Borkolum (247)	98 +3 Cf Californium (251)	99 +3 Es Einsteinium (252)	100 +3 Fm Fermium (257)	101 +2 Md ⁺³ Mendelevium (258)	102 +2 No ⁺³ Notellum (259)	103 +3 Lr Lawrencium (262)

E.g.

A solution of barium phosphate is mixed with aqueous sodium sulphate to yield solid barium sulphate and aqueous sodium phosphate.

E.g.

A solution of barium phosphate is mixed with aqueous sodium sulphate to yield solid barium sulphate and aqueous sodium phosphate.

E.g.

A solution of barium phosphate is mixed with aqueous sodium sulphate to yield solid barium sulphate and aqueous sodium phosphate.

 $Ba_3(PO_4)_{2(aq)}$

E.g.

A solution of barium phosphate is mixed with aqueous sodium sulphate to yield solid barium sulphate and aqueous sodium phosphate.

 $Ba_3(PO_4)_{2(aq)} \rightarrow Na_2SO_{4(aq)} \rightarrow$

E.g.

A solution of barium phosphate is mixed with aqueous sodium sulphate to yield solid barium sulphate and aqueous sodium phosphate.

 $Ba_{3}(PO_{4})_{2(aq)}$ + $Na_{2}SO_{4(aq)}$ > $BaSO_{4(s)}$

E.g.

A solution of barium phosphate is mixed with aqueous sodium sulphate to yield solid barium sulphate and aqueous sodium phosphate.

 $Ba_{3}(PO_{4})_{2(aq)}$ + $Na_{2}SO_{4(aq)}$ \rightarrow $BaSO_{4(s)}$ + $Na_{3}PO_{4(aq)}$

E.g.

A solution of barium phosphate is mixed with aqueous sodium sulphate to yield solid barium sulphate and aqueous sodium phosphate.

 $Ba_{3}(PO_{4})_{2(aq)} + \Im a_{2}SO_{4(aq)} \rightarrow BaSO_{4(s)} + Aa_{3}PO_{4(aq)}$