Science 10 Review

Part 1: Chemical Compounds

Ionic Compounds

Ionic Compounds

- Metal and non-metal combination

PERIODIC Table of the Elements

| 1 |
| :--- | ---: |
| H^{1} |
| Hydrogn |
| 1.0 |

$\begin{array}{lr} 3 & +1 \\ \mathrm{Li} & \\ \text { Luti.m } \\ 6.9 & \end{array}$	$\begin{aligned} & 4 \quad+2 \\ & \mathrm{Be} \\ & \text { Beryilum } \\ & 9.0 \end{aligned}$
$\begin{array}{ll} 11 & +1 \\ \mathrm{Na} & \\ \text { Sod.m } & \\ 23.0 & \end{array}$	$\begin{aligned} & 12 \quad+2 \\ & \mathrm{Mg} \\ & \text { Magnoei.m } \\ & 24.3 \end{aligned}$
$\begin{aligned} & 19 \quad+1 \\ & \text { K } \\ & \text { Prassum } \\ & 39.1 \end{aligned}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \\ & \text { Cablum } \\ & 40.1 \end{aligned}$
$\begin{array}{ll} 37 & +1 \\ \mathbf{R b} \\ \text { Rubidum } \\ 85.5 \end{array}$	$\begin{aligned} & 38 \quad+2 \\ & \mathrm{Sr} \\ & \text { Strofitum } \\ & 87.6 \end{aligned}$
$\begin{array}{ll} \hline 55 & +1 \\ \text { Cs } & \\ \text { coel.m } & \\ 132.9 & \end{array}$	$\begin{array}{lr} \hline 56 & +2 \\ \mathrm{Ba} & \\ \text { Bant.m } & \\ 137.3 \end{array}$
$\begin{array}{ll} 87 & +1 \\ \mathrm{Fr} & \end{array}$ Fravcium (223)	$\begin{array}{ll} 88 & +2 \\ \text { Ra } \\ \text { Rsdum } & \\ (226) \end{array}$
Alkali Metals	Alkaline Earth Metals

Based on mass of C-12 at 12.00
Any value in parentheses
is the mass of the most
stable or best known isotope for
elements which do not occur natural

$\begin{array}{ll} \hline 58 & +3 \\ \mathrm{Ce} & +4 \\ \text { Coximm } \\ 140.1 \end{array}$	59 +3 Pr +4 Pasoodmum 140.9	$60 \quad+3$ Nd Nesdfmum 144.2	$61 \quad+3$ Pm Pramotium (145)	$\begin{array}{ll} \hline 62 & +3 \\ \mathrm{Sm}^{2} & +4 \\ \text { Samautum } \\ 150.4 \end{array}$	$\begin{array}{\|lr} \hline 63 & +3 \\ \text { Eu } & +2 \\ \text { Eurpplam } \\ 152.0 \end{array}$	$64+3$ Gd Gadst-ium 157.3	$\begin{array}{\|ll} \hline 65 & +3 \\ \mathrm{~Tb} & +4 \\ \text { Intium } \\ 158.9 & \\ \hline \end{array}$	$\begin{aligned} & 66 \quad+3 \\ & \text { Dy } \\ & \text { Dypred.m } \\ & 162.5 \end{aligned}$
$\begin{aligned} & \hline 90 \quad+4 \\ & \text { Th } \\ & \text { Thatim } \\ & 232.0 \end{aligned}$	91 +5 Pa +4 Prdastimm 231.0	$\begin{array}{ll} \hline 92 & +6 \\ \mathrm{U} & +4 \\ \text { Unathm }^{+5} \\ 238.0 \end{array}$	$\begin{array}{ll} 93 & +5 \\ N p & +3 \\ \text { Nopanim } & +6 \\ \text { Non } \\ (237) & \end{array}$	$\begin{array}{ll} \hline 94 & +4 \\ \mathrm{Pu} & +6 \\ \text { PAnnum } & +5 \\ (244) \end{array}$	$\begin{array}{ll} \hline 95 & +3 \\ \mathrm{Am} & +4 \\ \text { Anvide } & +6 \\ (243) & \\ \hline \end{array}$	96 +3 Cm Cuive (247)	$\begin{array}{\|ll} \hline 97 & +3 \\ \text { Bk } & +4 \\ \text { lackod.m } \\ (247) & \\ \hline \end{array}$	$98 \quad+3$ Cf Calthot.m (251)

$\begin{array}{ll} \hline 67 & +3 \\ \text { Ho } & \\ \text { Heimam } \\ 164.9 \end{array}$	$68 \quad+3$ Er Ettum 167.3	$\begin{array}{ll\|} \hline 69 & +3 \\ \mathrm{Tm}_{\text {Tulum }} & +2 \\ 168.9 \end{array}$	$\begin{array}{ll} \hline 70 & +3 \\ \mathrm{Yb} & +2 \\ \text { Mnatium } \\ 173.0 \end{array}$	$\begin{array}{ll} \hline 71 \quad+3 \\ \mathrm{Lu} \\ \text { Lustum } \\ 175.0 \end{array}$
$99 \quad+3$ $\mathrm{Es}^{\text {Enstateun }}$ (252)	$\begin{aligned} & 100 \quad+3 \\ & \text { Fm } \\ & \text { formum } \\ & (257) \end{aligned}$	$\begin{array}{ll} 101 & +2 \\ \text { Md }^{2} & +3 \end{array}$ Nonsoboviam (258)	$\begin{array}{ll} \begin{array}{ll} 102 & +2 \\ \text { No } & +3 \\ \text { Notolum } \\ (259) \end{array} \end{array}$	$103+3$ Lr Liwno-chum (262)

Ionic Compounds

- Metal and non-metal combination

Ionic Compounds

- Metal and non-metal combination
- Contains charged ions (atoms or group of atoms that have lost or gained electrons)
e. $9 \mathrm{O}^{2-}, \mathrm{PO}_{4}{ }^{3-}$
$\mathrm{K}+, \mathrm{NH}_{4}{ }^{+}$

Ionic Compounds

- Metal and non-metal combination
- Contains charged ions (atoms or group of atoms that have lost or gained electrons)
e. $9 \mathrm{O}^{2-}, \mathrm{PO}_{4}{ }^{3-}$
$\mathrm{K}^{+}, \mathrm{NH}_{4}{ }^{+}$
- Ionic bond forms as a result of electron transfer.
- Ionic bond is a force of attraction between positive and negative ions
- Ionic bond is a force of attraction between positive and negative ions

- Ionic bond is a force of attraction between positive and negative ions

- E.g. $\mathrm{CuO}, \mathrm{NaHC}_{2} \mathrm{O}_{4}$
- Ionic bond is a force of attraction between positive and negative ions

- E.g. $\mathrm{CuO}, \mathrm{NaHC}_{2} \mathrm{O}_{4}$
- Ionic compounds form 3D crystals that contain many ions
- Ionic bond is a force of attraction between positive and negative ions

- E.g. $\mathrm{CuO}, \mathrm{NaHC}_{2} \mathrm{O}_{4}$
- Ionic compounds forms 3D crystals that contain many ions

- CuO, a formula unit, represents the lowest ratio of positive to negative ions

Molecular compounds

Molecular compounds

- Non-metal and non-metal combination

PERIODIC Table of the Elements

| 1 |
| :--- | ---: |
| H^{1} |
| Hydrogn |
| 1.0 |

$\begin{array}{lr} 3 & +1 \\ \mathrm{Li} & \\ \text { Luti.m } \\ 6.9 & \end{array}$	$\begin{aligned} & 4 \quad+2 \\ & \mathrm{Be} \\ & \text { Beryilum } \\ & 9.0 \end{aligned}$
$\begin{array}{ll} 11 & +1 \\ \mathrm{Na} & \\ \text { Sod.m } & \\ 23.0 & \end{array}$	$\begin{aligned} & 12 \quad+2 \\ & \mathrm{Mg} \\ & \text { Magnoei.m } \\ & 24.3 \end{aligned}$
$\begin{aligned} & 19 \quad+1 \\ & \text { K } \\ & \text { Prassum } \\ & 39.1 \end{aligned}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \\ & \text { Cablum } \\ & 40.1 \end{aligned}$
$\begin{array}{ll} 37 & +1 \\ \mathbf{R b} \\ \text { Rubidum } \\ 85.5 \end{array}$	$\begin{aligned} & 38 \quad+2 \\ & \mathrm{Sr} \\ & \text { Strofitum } \\ & 87.6 \end{aligned}$
$\begin{array}{ll} \hline 55 & +1 \\ \text { Cs } & \\ \text { coel.m } & \\ 132.9 & \end{array}$	$\begin{array}{lr} \hline 56 & +2 \\ \mathrm{Ba} & \\ \text { Bant.m } & \\ 137.3 \end{array}$
$\begin{array}{ll} 87 & +1 \\ \mathrm{Fr} & \end{array}$ Fravcium (223)	$\begin{array}{ll} 88 & +2 \\ \text { Ra } \\ \text { Rsdum } & \\ (226) \end{array}$
Alkali Metals	Alkaline Earth Metals

Based on mass of C-12 at 12.00
Any value in parentheses
is the mass of the most
stable or best known isotope for
elements which do not occur natural

$\begin{array}{ll} \hline 58 & +3 \\ \mathrm{Ce} & +4 \\ \text { Coximm } \\ 140.1 \end{array}$	59 +3 Pr +4 Pasoodmum 140.9	$60 \quad+3$ Nd Nesdfmum 144.2	$61 \quad+3$ Pm Pramotium (145)	$\begin{array}{ll} \hline 62 & +3 \\ \mathrm{Sm}^{2} & +4 \\ \text { Samautum } \\ 150.4 \end{array}$	$\begin{array}{\|lr} \hline 63 & +3 \\ \text { Eu } & +2 \\ \text { Eurpplam } \\ 152.0 \end{array}$	$64+3$ Gd Gadst-ium 157.3	$\begin{array}{\|ll} \hline 65 & +3 \\ \mathrm{~Tb} & +4 \\ \text { Intium } \\ 158.9 & \\ \hline \end{array}$	$\begin{aligned} & 66 \quad+3 \\ & \text { Dy } \\ & \text { Dypred.m } \\ & 162.5 \end{aligned}$
$\begin{aligned} & \hline 90 \quad+4 \\ & \text { Th } \\ & \text { Thatim } \\ & 232.0 \end{aligned}$	91 +5 Pa +4 Prdastimm 231.0	$\begin{array}{ll} \hline 92 & +6 \\ \mathrm{U} & +4 \\ \text { Unathm }^{+5} \\ 238.0 \end{array}$	$\begin{array}{ll} 93 & +5 \\ N p & +3 \\ \text { Nopanim } & +6 \\ \text { Non } \\ (237) & \end{array}$	$\begin{array}{ll} \hline 94 & +4 \\ \mathrm{Pu} & +6 \\ \text { PAnnum } & +5 \\ (244) \end{array}$	$\begin{array}{ll} \hline 95 & +3 \\ \mathrm{Am} & +4 \\ \text { Anvide } & +6 \\ (243) & \\ \hline \end{array}$	96 +3 Cm Cuive (247)	$\begin{array}{\|ll} \hline 97 & +3 \\ \text { Bk } & +4 \\ \text { lackod.m } \\ (247) & \\ \hline \end{array}$	$98 \quad+3$ Cf Calthot.m (251)

$\begin{array}{ll} \hline 67 & +3 \\ \text { Ho } & \\ \text { Heimam } \\ 164.9 \end{array}$	$68 \quad+3$ Er Ettum 167.3	$\begin{array}{ll\|} \hline 69 & +3 \\ \mathrm{Tm}_{\text {Tulum }} & +2 \\ 168.9 \end{array}$	$\begin{array}{ll} \hline 70 & +3 \\ \mathrm{Yb} & +2 \\ \text { Mnatium } \\ 173.0 \end{array}$	$\begin{array}{ll} \hline 71 \quad+3 \\ \mathrm{Lu} \\ \text { Lustum } \\ 175.0 \end{array}$
$99 \quad+3$ $\mathrm{Es}^{\text {Enstateun }}$ (252)	$\begin{aligned} & 100 \quad+3 \\ & \text { Fm } \\ & \text { formum } \\ & (257) \end{aligned}$	$\begin{array}{ll} 101 & +2 \\ \text { Md }^{2} & +3 \end{array}$ Nonsoboviam (258)	$\begin{array}{ll} \begin{array}{ll} 102 & +2 \\ \text { No } & +3 \\ \text { Notolum } \\ (259) \end{array} \end{array}$	$103+3$ Lr Liwno-chum (262)

Molecular compounds

- Non-metal and non-metal combination

Molecular compounds

- Non-metal and non-metal combination
- Form molecules

Molecular compounds

- Non-metal and non-metal combination
- Form molecules

- Contain covalent bonds that result from electron sharing

Molecular compounds

- Non-metal and non-metal combination
- Form molecules

- Contain covalent bonds that result from electron sharing
- E.g. $\mathrm{CH}_{4}, \mathrm{SO}_{2}$
atoms

molecule
covalent bond
atoms

ionic bond

Acids, Bases and Salts

Acids, Bases and Salts

- Acids are molecular compounds that contain hydrogen atoms. They produce the H +ion.

Acids, Bases and Salts

- Acids are molecular compounds that contain hydrogen atoms. They produce the H ion.
- E.g. $\mathrm{HCl}=$ hydrochloric acid $\mathrm{H}_{2} \mathrm{SO}_{4}=$ sulphuric acid

Acids, Bases and Salts

- Acids are molecular compounds that contain hydrogen atoms. They produce the $\mathrm{H}+$ ion.
- E.g. $\mathrm{HCl}=$ hydrochloric acid $\mathrm{H}_{2} \mathrm{SO}_{4}=$ sulphuric acid
- Bases contain the hydroxide ion, OH^{-} E. 9 NaOH

Acids, Bases and Salts

- Acids are molecular compounds that contain hydrogen atoms. They produce the H^{+}ion.
- E.g. $\mathrm{HCl}=$ hydrochloric acid $\mathrm{H}_{2} \mathrm{SO}_{4}=$ sulphuric acid
- Bases contain the hydroxide ion, OH -

E. 9 NaOH

- Salts are ionic compounds that form from reacting acids and bases. E.g. NaCl

Phase Symbols

Phase Symbols

- Are subscripts that indicate the phase of the chemical

Phase Symbols

- Are subscripts that indicate the phase of the chemical E. $9 \quad$ (s) solid state; $\mathrm{Fe}_{(s)}$

Phase Symbols

- Are subscripts that indicate the phase of the chemical E. 9 (s) solid state; $\mathrm{Fe}_{(s)}$
(I) liquid state; $\mathrm{H}_{2} \mathrm{O}_{(1)}$

Phase Symbols

- Are subscripts that indicate the phase of the chemical
E. 9 (s) solid state; $\mathrm{Fe}_{(s)}$
(I) liquid state: $\mathrm{H}_{2} \mathrm{O}_{(1)}$
(g) gaseous state; $\mathrm{O}_{2(9)}$

Phase Symbols

- Are subscripts that indicate the phase of the chemical
E. 9 (s) solid state; $\mathrm{Fe}_{(s)}$
(I) liquid state: $\mathrm{H}_{2} \mathrm{O}_{(1)}$
(g) gaseous state; $\mathrm{O}_{2(g)}$
(aq) means aqueous or substance is dissolved in water: $\mathrm{NaCl}_{(a q)}$

Dissociation equations

Dissociation equations

- All ionic compounds and acids dissociate or break up into ions when dissolved in water

Dissociation equations

- All ionic compounds and acids dissociate (break up into ions) when dissolved in water
- E.g. Ca and NO_{2}

Polyatomic ion

Dissociation equations

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and $\mathrm{NO}_{2} \quad \mathrm{Ca}^{2+}$

Dissociation equations

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and $\mathrm{NO}_{2} \quad \mathrm{Ca}^{2+} \quad \mathrm{NO}_{2}{ }^{-}$

Dissociation equations

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and $\mathrm{NO}_{2} \quad \mathrm{Ca}^{2+} \quad \mathrm{NO}_{2}{ }^{-}$
NO_{2}

Dissociation equations

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and $\mathrm{NO}_{2} \quad \mathrm{Ca}^{2+} \quad \mathrm{NO}_{2}{ }^{-}$
$\mathrm{NO}_{2}{ }^{-}$
$\mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2(s)}$

Dissociation equations

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and $\mathrm{NO}_{2} \quad \mathrm{Ca}^{2+} \quad \mathrm{NO}_{2}{ }^{-}$
NO_{2}
$\mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2(s)}$
calcium nitrite

Dissociation equations

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and $\mathrm{NO}_{2} \quad \mathrm{Ca}^{2+} \quad \mathrm{NO}_{2}{ }^{-}$
NO_{2}
$\mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2(s)} \longrightarrow \mathrm{Ca}^{2+}$
calcium nitrite

Dissociation equations

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and $\mathrm{NO}_{2} \quad \mathrm{Ca}^{2+} \quad \mathrm{NO}_{2}{ }^{-}$
NO_{2}
$\mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2(s)} \longrightarrow \mathrm{Ca}^{2+}+$
calcium nitrite

Dissociation equations

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and $\mathrm{NO}_{2} \quad \mathrm{Ca}^{2+} \quad \mathrm{NO}_{2}{ }^{-}$ $\mathrm{NO}_{2}-$
$\mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2(s)} \longrightarrow \mathrm{Ca}^{2+}+2 \mathrm{NO}_{2}{ }^{-}$ calcium nitrite

Dissociation equations

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and $\mathrm{NO}_{2} \quad \mathrm{Ca}^{2+} \quad \mathrm{NO}_{2}{ }^{-}$
$\mathrm{NO}_{2}-$
$\mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2(s)} \longrightarrow \mathrm{Ca}^{2+}\left(\right.$ aq) $+2 \mathrm{NO}_{2}{ }^{-}$
calcium nitrite

Dissociation equations

- All ionic compounds and acids dissociate or break up into ions when dissolved in water
- E.g. Ca and $\mathrm{NO}_{2} \quad \mathrm{Ca}^{2+} \quad \mathrm{NO}_{2}{ }^{-}$
NO_{2}
$\mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2(s)} \longrightarrow \mathrm{Ca}^{2+}(a q)+2 \mathrm{NO}_{2^{-}}{ }^{(a q)}$ calcium nitrite
- E.g. Ga and S

$$
\mathrm{Ga}^{3+}
$$

S2-

- E.g. Ga and S
Ga^{3+}
S2-
S2-
- E.g. Ga and S

$G a^{3+}$	S^{2-}
$G a^{3+}$	S_{2-}

- E.g. Ga and S

$$
\begin{array}{ll}
G a^{3+} & S^{2-} \\
G a^{3+} & S^{2-} \\
& S_{2-}
\end{array}
$$

- E.g. Ga and $S \quad \begin{array}{ll}G a^{3+} \\ G a^{3+} & S_{2-} \\ S_{2-} \\ S_{2-}\end{array}$

$$
\mathrm{Ga}_{2} \mathrm{~S}_{3(s)} \longrightarrow
$$

- E.g. Ga and S $\begin{array}{ll}G a^{3+} \\ G a^{3+} & S^{2-} \\ S_{2-} \\ S_{2-}\end{array}$

$$
\mathrm{Ga}_{2} \mathrm{~S}_{3(s)} \longrightarrow 2 \mathrm{Ga}_{(\mathrm{aq})}
$$

- E.g. Ga and S | $G a^{3+}$ | |
| :--- | :--- |
| $G a^{3+}$ | S_{2-} |
| S_{2-} | |
| S_{2-} | |

$$
\mathrm{Ga}_{2} \mathrm{~S}_{3(s)} \longrightarrow 2 \mathrm{Ga}^{3+}{ }_{(a q)}+3 \mathrm{~S}^{2-}{ }_{(a q)}
$$

- E.g. Ga and S $\begin{array}{lll}G a^{3+} & S_{2-} \\ & G a^{3+} & S_{2-} \\ & & S^{2-}\end{array}$
$\mathrm{Ga}_{2} \mathrm{~S}_{3(s)} \longrightarrow 2 \mathrm{Ga}^{3+}{ }_{(a q)}+3 \mathrm{~S}^{2-}{ }_{(a q)}$ gallium sulphide
ending change to ide

Science 10 Review

Part 2: Balancing Equations

Writing and Balancing Chemical Equations

Step 1
Write chemical equation with phase symbols if not already done.

Writing and Balancing Chemical Equations

Step 1
Write chemical equation with phase symbols if not already done.

$$
\text { e.g. } A I_{(s)}+I_{2(g)} \rightarrow A I I_{3(s)}
$$

Step 2

Assign every chemical species a coefficient of ONE.

Step 2

Assign every chemical species a coefficient of ONE.

Step 2

Assign every chemical species a coefficient of ONE.
e.g. __Al $\mathrm{I}_{(\mathrm{s})}+\ldots \mathrm{I}_{2(g)} \rightarrow \ldots \mathrm{AlI}_{3(\mathrm{~s})}$

Step 2

Assign every chemical species a coefficient of ONE.
e.g. $\quad \underline{1} \mathrm{Al}_{(s)}+\underline{1} \mathrm{I}_{2(g)} \rightarrow \underline{1} \mathrm{AlI}_{3(\mathrm{~s})}$

Step 3

Count the number of each atom on reactant and product side of equation (multiply coefficient and subscript).

Step 3

Count the number of each atom on reactant and product side of equation (multiply coefficient and subscript).
$\mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3}$

Step 3

Count the number of each atom on reactant and product side of equation (multiply coefficient and subscript).
$\mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3}$

2 Aluminum
3 Sulphur
9 Oxygen

Step 3

Count the number of each atom on reactant and product side of equation (multiply coefficient and subscript).

$$
\mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3} \quad 3 \mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3}
$$

2 Aluminum
3 Sulphur
9 Oxygen

Step 3

Count the number of each atom on reactant and product side of equation (multiply coefficient and subscript).

$\mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3}$

2 Aluminum
3 Sulphur
9 Oxygen
$3 \mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3}$
6 Aluminum
9 Sulphur
27 Oxygen

Step 4
Increase or change the
coefficients to make numbers of atoms balance on both sides of equation.

$$
\text { e.g. } \underline{2} A I_{(s)}+\underline{3} I_{2(g)} \rightarrow \underline{2} A I_{3(s)}
$$

Step 5

Always double check your answer.

$$
\text { e.9. } \quad \underline{2} A I_{(s)}+\underline{3} I_{2(g)} \rightarrow \underline{2} A I_{3(s)}
$$

Reactants

$$
\begin{array}{ll}
A I=2 & A l=2 \\
I=6 & I=6
\end{array}
$$

Helpful Hints:

- Balance elements in elemental form ($\mathrm{Fe}, \mathrm{O}_{2}, \mathrm{~S}_{8}, \mathrm{P}_{4}$) last.

Helpful Hints:

- Balance elements in elemental form ($\mathrm{Fe}, \mathrm{O}_{2}, \mathrm{~S}_{8}, \mathrm{P}_{4}$) last.
- Balance polyatomic ions (e.g. $\mathrm{SO}_{4}{ }^{2-}$) as a group if they don't break apart.

Helpful Hints:

- Balance elements in elemental form ($\mathrm{Fe}, \mathrm{O}_{2}, \mathrm{~S}_{8}, \mathrm{P}_{4}$) last.
- Balance polyatomic ions (e.g. $\mathrm{SO}_{4}{ }^{2-}$) as
a group if they don't break apart.
- Balance oxygen and hydrogen last.

Example:

$$
\begin{aligned}
-\mathrm{C}_{8} \mathrm{H}_{18(g)}+\underline{12.5 \mathrm{O}_{2(g)} \rightarrow} & -8 \mathrm{CO}_{2(g)}+-9 \mathrm{H}_{2} \mathrm{O}_{(g)} \\
25 \text { Oxygen } & \frac{16 \text { Oxygen }}{25 \text { Oxygen }}
\end{aligned}
$$

Must double all coefficients to remove fraction

Example:

$$
\underline{2} \mathrm{C}_{8} \mathrm{H}_{18(\mathrm{~s})}+\underline{25} \mathrm{O}_{2(g)} \rightarrow \underline{16} \mathrm{CO}_{2(g)}+\underline{18} \mathrm{H}_{2} \mathrm{O}_{(g)}
$$

50 Oxygen
16 Carbon
36 Hydrogen

50 Oxygen
16 Carbon
36 Hydrogen

Science 10 Review

Part 3: Names \& Formulas of

 Compounds
Formulas of Ionic Compounds

Formulas of Ionic Compounds

- Roman Numeral in name indicates ion charge

Formulas of Ionic Compounds

- Roman Numeral in name indicates ion charge
e. 9 mercury (II) phosphate

Formulas of Ionic Compounds

- Roman Numeral in name indicates ion charge
e. 9 mercury (II) phosphate $\mathrm{Hg}^{2+} \quad \mathrm{PO}_{4}{ }^{3-}$

Formulas of Ionic Compounds

- Roman Numeral in name indicates ion charge
e. 9 mercury (II) phosphate $\mathrm{Hg}^{2+} \quad \mathrm{PO}_{4}{ }^{3-}$ Hg^{2+}

Formulas of Ionic Compounds

- Roman Numeral in name indicates ion charge
e. 9 mercury (II) phosphate $\mathrm{Hg}^{2+} \quad \mathrm{PO}_{4}{ }^{3-}$
$\mathrm{Hg}^{2+} \quad \mathrm{PO}_{4}{ }^{3-}$

Formulas of Ionic Compounds

- Roman Numeral in name indicates ion charge
e. 9 mercury (II) phosphate $\mathrm{Hg}^{2+} \quad \mathrm{PO}_{4}{ }^{3-}$
$\mathrm{Hg}^{2+} \quad \mathrm{PO}_{4}{ }^{3-}$
Hg^{2+}

Formulas of Ionic Compounds

- Roman Numeral in name indicates ion charge
e. 9 mercury (II) phosphate $\mathrm{Hg}^{2+} \quad \mathrm{PO}_{4}{ }^{3-}$ $\mathrm{Hg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ $\mathrm{Hg}^{2+} \quad \mathrm{PO}_{4}{ }^{3-}$ Hg^{2+}

Naming Ionic Compounds

Naming Ionic Compounds

- Must use a roman numeral to indicate the charge of metal ions with more than one possible ion charge

Naming Ionic Compounds

- Must use a roman numeral to indicate the charge of metal ions with more than one possible ion charge

$$
\begin{aligned}
\text { e. } 9 & \mathrm{Cr}_{2} \mathrm{O}_{3} \\
& \dagger \\
+3 & \text { or }+2
\end{aligned}
$$

Naming Ionic Compounds

- Must use a roman numeral to indicate the charge of metal ions with more than one possible ion charge

$$
\begin{array}{ccc}
\text { e. } 9 & \mathrm{Cr}_{2} \mathrm{O}_{3} & \mathrm{Cr} \\
& \uparrow & \mathrm{Cr} \\
+3 & \text { or +2 } &
\end{array}
$$

Naming Ionic Compounds

- Must use a roman numeral to indicate the charge of metal ions with more than one possible ion charge
$\begin{array}{cl}\text { e. } 9 & \mathrm{Cr}_{2} \mathrm{O}_{3} \\ & \uparrow \\ +3 & \text { or }+2\end{array}$
$\mathrm{Cr} \mathrm{O}^{2-}$
$\mathrm{Cr} \mathrm{O}^{2-}$
O^{2-}

Naming Ionic Compounds

- Must use a roman numeral to indicate the charge of metal ions with more than one possible ion charge

$$
\begin{array}{lllll}
\text { e. } 9 & \mathrm{Cr}_{2} \mathrm{O}_{3} & \mathrm{Cr}^{3+} & \mathrm{O}^{2-} & \\
& \dagger & \mathrm{Cr}^{3+} & \mathrm{O}^{2-} & \\
+3 & \text { or +2 } & & & \mathrm{O}_{2-}
\end{array}
$$

Naming Ionic Compounds

- Must use a roman numeral to indicate the charge of metal ions with more than one possible ion charge

e. 9	$\mathrm{Cr}_{2} \mathrm{O}_{3}$	Cr^{3+}	O^{2-}	
	\dagger	Cr^{3+}	O^{2-}	
+3	or +2			O^{2-}

chromium (III) oxide

- A roman numeral is not required when a metal has only one ion charge
- A roman numeral is not required when a metal has only one ion charge
e. $9 \quad \mathrm{~K}_{2} \mathrm{SO}_{4}$
- A roman numeral is not required when a metal has only one ion charge
e. $9 \quad \mathrm{~K}_{2} \mathrm{SO}_{4}$

+1 only
- A roman numeral is not required when a metal has only one ion charge

$$
\begin{array}{ccc}
\text { e. } 9 & \mathrm{~K}_{2} \mathrm{SO}_{4} & \text { potassium sulphate } \\
\uparrow \\
+1 & \\
& \text { only } &
\end{array}
$$

Formulas of Molecular Compounds

Formulas of Molecular Compounds

- Binary compounds use prefix system to indicate the number atoms of each element

Formulas of Molecular

 Compounds- Binary compounds use prefix system to indicate the number atoms of each element
- The element furthest to the left or farthest down the periodic table is written first

Greek prefixes

$$
\begin{array}{ll}
1-\text { mono } & 6 \text { - hexa } \\
2-\text { di } & 7-\text { hepta } \\
3-\text { tri } & 8-\text { octa } \\
4-\text { tetra } & 9-\text { nona } \\
5 \text { - penta } & 10-\text { deca }
\end{array}
$$

Formulas of Molecular Compounds

Formulas of Molecular Compounds

sulphur dioxide

Formulas of Molecular Compounds

sulphur dioxide
SO_{2}

Formulas of Molecular Compounds

sulphur dioxide
SO_{2}
tetranitrogen nonaoxide

Formulas of Molecular Compounds

sulphur dioxide
SO_{2}
tetranitrogen nonaoxide
$\mathrm{N}_{4} \mathrm{O}_{9}$

Formulas of Molecular Compounds

sulphur dioxide
SO_{2}
tetranitrogen nonaoxide
$\mathrm{N}_{4} \mathrm{O}_{9}$ diphosphorus pentoxide

Formulas of Molecular Compounds

sulphur dioxide
SO_{2}
tetranitrogen nonaoxide
$\mathrm{N}_{4} \mathrm{O}_{9}$
diphosphorus pentoxide
$\mathrm{P}_{2} \mathrm{O}_{5}$

Naming Molecular Compounds

Naming Molecular Compounds

- Mono is never used for the first element

Naming Molecular Compounds

- Mono is never used for the first element
- Second element changes to -ide ending

Naming Molecular Compounds

- Mono is never used for the first element
- Second element changes to -ide ending
- Vowels $(a, 0)$ on prefix are sometimes omitted if followed by vowels $(a, 0)$

Naming Molecular Compounds

- Mono is never used for the first element
- Second element changes to -ide ending
- Vowels $(a, 0)$ on prefix are sometimes omitted if followed by vowels $(a, 0)$
e.g. carbon monooxide \rightarrow carbon monoxide

Naming Molecular Compounds

Naming Molecular Compounds

SiO_{2}

Naming Molecular Compounds

$\mathrm{SiO}_{2} \quad$ silicon dioxide

Naming Molecular Compounds

$\mathrm{SiO}_{2} \quad$ silicon dioxide $\mathrm{N}_{2} \mathrm{~S}$

Naming Molecular Compounds

SiO_{2}
$\mathrm{N}_{2} \mathrm{~S}$
silicon dioxide dinitrogen monosulphide

Naming Molecular Compounds

SiO_{2}
$\mathrm{N}_{2} \mathrm{~S}$
$\mathrm{P}_{4} \mathrm{Cl}_{6}$
silicon dioxide dinitrogen monosulphide

Naming Molecular Compounds

SiO_{2}
$\mathrm{N}_{2} \mathrm{~S}$
$\mathrm{P}_{4} \mathrm{Cl}_{6}$
silicon dioxide dinitrogen monosulphide tetraphosphorus hexachloride

Science 10 Review

Part 4: Chem/Phys Change Chemical Equations

Chemical \& Physical Change

Chemical \& Physical Change

- Physical change: no new substance is formed

Chemical \& Physical Change

- Physical change: no new substance is formed
- Chemical change: new substance is formed

Chemical \& Physical Change

- Physical change: no new substance is formed
- Chemical change: new substance is formed
- Evidence for chemical change:

Chemical \& Physical Change

- Physical change: no new substance is formed
- Chemical change: new substance is formed
- Evidence for chemical change:
energy change colour change
formation of a precipitate (solid) formation of a gas

Energy Changes

- Endothermic Rxns : energy absorbed e.g ice pack
- Exothermic Rxns: energy released e.g. combustion

Chemical equations from Word Equations

Chemical equations from Word Equations

- In Chemistry 11, a solution means something is dissolved in water. Therefore, the phase is aqueous.

Chemical equations from Word Equations

- In Chemistry 11, a solution means something is dissolved in water. Therefore, the phase is aqueous.
- Must include phase symbols and balance the equation

Chemical equations from Word Equations

- In Chemistry 11, a solution means something is dissolved in water. Therefore the phase is aqueous.
- Must include phase symbols and balance the equation
- Diatomic molecules: $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}$, $\mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}$

PERIODIC Table of the Elements

	$\begin{aligned} & 4 \quad+2 \\ & \mathrm{Be} \\ & \text { Beryilum } \\ & 9.0 \end{aligned}$
$\begin{array}{ll} 11 & +1 \\ \mathrm{Na} & \\ \text { sod.m } & \\ 23.0 & \end{array}$	$\begin{aligned} & 12 \quad+2 \\ & \mathrm{Mg} \\ & \text { Magnoei.m } \\ & 24.3 \end{aligned}$
$\begin{array}{ll} 19 & +1 \\ \text { K } & \\ \text { Ptansum } \\ 39.1 & \end{array}$	$\begin{aligned} & 20 \quad+2 \\ & \mathrm{Ca} \\ & \text { Caboun } \\ & 40.1 \end{aligned}$
$\begin{array}{ll} \hline 37 & +1 \\ \mathrm{Rb} \\ \text { Rubdum } \\ 85.5 \end{array}$	$\begin{aligned} & 38 \quad+2 \\ & \mathrm{Sr} \\ & \text { Strofitum } \\ & 87.6 \end{aligned}$
$\begin{array}{lr} \hline 55 & +1 \\ \text { Cs } & \\ \text { Coel.m } & \\ 132.9 & \end{array}$	56 +2 Ba Bant.m 137.3
$\begin{array}{ll} 87 \quad+1 \\ \mathrm{Fr} \\ \text { Fractum } \\ (223) \end{array}$	$88 \quad+2$ Ra Rsfum (226)
Alkali Metals	Alkaline Earth Metals

Based on mass of C-12 at 12.00 .
Any value in parentheses
is the mass of the most
stable or best known isotope for
elements which do not occur naturally

$\begin{array}{ll} \hline 58 & +3 \\ \mathrm{Ce} & +4 \\ \text { Conitm } \\ 140.1 \end{array}$	59 +3 Pr +4 Pasodobmum 140.9	$60 \quad+3$ Nd Nosdymum 144.2	$61 \quad+3$ Pm Premetiun (145)	$62 \quad+3$ $S_{\text {Sm }}{ }^{+4}$ Sanuitum 150.4	$\begin{array}{\|lr} \hline 63 & +3 \\ \text { Eu } & +2 \\ \text { Eurpol-m } \\ 152.0 \\ \hline \end{array}$	$64 \quad+3$ Gd Gadst-um 157.3	65 +3 $\mathrm{~Tb}^{+4}$ Thtium 158.9	$66 \quad+3$ Dy Dypred.m 162.5	$67 \quad+3$ Ho Hoimlem 164.9	$68 \quad+3$ Er Ettium 167.3	$\begin{array}{\|ll\|} \hline 69 & +3 \\ \mathrm{Tm}_{\text {Tmum }} & +2 \\ \text { Tilum } & \\ 168.9 & \end{array}$	$\begin{array}{\|lr\|} \hline 70 & +3 \\ \mathrm{Yb} & +2 \\ \text { Mantium } \\ 173.0 \end{array}$	$\begin{array}{ll} \hline 71 \quad+3 \\ \mathrm{Lu} \\ \text { Listum } \\ 175.0 \end{array}$
$\begin{aligned} & \hline 90 \quad+4 \\ & \text { Th } \\ & \text { Thaxim } \\ & 232.0 \end{aligned}$	$91 \quad+5$ $\mathrm{~Pa} \quad+4$ Procathum 231.0	$\begin{array}{ll} 92 & +6 \\ \mathrm{U} & +4 \\ \mathrm{Uaram} \\ \text { +5 } \\ 238.0 \end{array}$	$\begin{array}{ll} 93 & +5 \\ N p & +3 \\ \text { Neparim } & +4 \\ \text { Nen } \\ (237) & \end{array}$	$\begin{array}{ll} \hline 94 & +4 \\ \mathrm{Pu} & +6 \\ \text { PAmum } & +5 \\ (244) \end{array}$	$\begin{array}{\|ll} \hline 95 & +3 \\ \text { Am } & +5 \\ \text { Ampidm } & +6 \\ (243) & \\ \hline \end{array}$	$96 \quad+3$ $\mathrm{Cm}_{\text {Orim }}$ (247)	$\begin{array}{ll} \hline 97 & +3 \\ \text { Bk } & +4 \\ \text { Bacobl-m } \\ (247) \end{array}$	98 +3 Cf Caltomitm (251)	$99 \quad+3$ Es Elstatiun (252)	$\begin{array}{\|l\|l\|} \hline 100 \quad+3 \\ \text { Fm } \\ \text { formum } \\ (257) \end{array}$	$101 \quad+2$ Md $^{+3}$ Nensoivi-m (258)	$\begin{array}{\|ll\|} \hline 102 & +2 \\ \mathrm{No} & +3 \\ \text { Notalum } \\ (259) \end{array}$	$103+3$ Lr Liwrozcium (262)

Chemical equations from Word Equations

Chemical equations from Word Equations

E.g.

A solution of barium phosphate is mixed with aqueous sodium sulphate to yield solid barium sulphate and aqueous sodium phosphate.

Chemical equations from Word Equations

E.g.

A solution of barium phosphate is mixed with aqueous sodium sulphate to yield solid barium sulphate and aqueous sodium phosphate.

Chemical equations from Word Equations

E.g.

A solution of barium phosphate is mixed with aqueous sodium sulphate to yield solid barium sulphate and aqueous sodium phosphate.

$\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2(a q)}$

Chemical equations from Word Equations

E.g.

A solution of barium phosphate is mixed with aqueous sodium sulphate to yield solid barium sulphate and aqueous sodium phosphate.

$$
\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2(a q)}+\quad \mathrm{Na}_{2} \mathrm{SO}_{4(a q)} \rightarrow
$$

Chemical equations from Word Equations

E.g.

A solution of barium phosphate is mixed with aqueous sodium sulphate to yield solid barium sulphate and aqueous sodium phosphate.
$\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{qq})}+\quad \mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{q})} \rightarrow \quad \mathrm{BaSO}_{4(\mathrm{~s})}$

Chemical equations from Word Equations

E.g.

A solution of barium phosphate is mixed with aqueous sodium sulphate to yield solid barium sulphate and aqueous sodium phosphate.
$\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2(a q)}+\mathrm{Na}_{2} \mathrm{SO}_{4(a q)} \rightarrow \quad \mathrm{BaSO}_{4(s)^{+}}+\mathrm{Na}_{3} \mathrm{PO}_{4(a q)}$

Chemical equations from Word Equations

E.g.

A solution of barium phosphate is mixed with aqueous sodium sulphate to yield solid barium sulphate and aqueous sodium phosphate.
$\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2(a q)}+3 \mathrm{Na}_{2} \mathrm{SO}_{4(a q)} \rightarrow \quad \mathrm{BaSO}_{4(s)^{+}}+\mathrm{Na}_{3} \mathrm{PO}_{4(a q)}$

